🔹Module 1: Data Science Foundations (Sessions 1–2) • 1. Introduction to Full Stack AI • 2. Data Science Lifecycle, AI vs ML vs DL & Real-World Use Cases
🔹 Module 2: Python for Data Analysis (Sessions 3–6) • 3. Python Basics: Syntax, Control Structures, Functions • 4. Data Structures in Python – List, Dict, Set, Tuple • 5. NumPy for Numerical Computing • 6. Pandas – Data Manipulation & Cleaning
🔹 Module 3: Data Visualization & Storytelling (Sessions 7–9) • 7. Visualization using Matplotlib & Seaborn • 8. Interactive Dashboards using Plotly & Tableau • 9. Storytelling with Data – Generating Business Insights
🔹 Module 4: SQL for Data Science (Sessions 10–11) • 10. SQL Basics – SELECT, JOIN, WHERE, GROUP BY • 11. Window Functions, Subqueries, Python Integration
🔹 Module 5: Statistics & Probability (Sessions 12–13) • 12. Descriptive & Inferential Statistics, Distributions • 13. Hypothesis Testing, Confidence Intervals, A/B Testing
🔹 Module 6: Machine Learning – Core Models (Sessions 14–18) • 14. ML Workflow & Supervised Learning – Linear Regression • 15. Logistic Regression, Decision Trees • 16. Random Forest & Gradient Boosting (XGBoost) • 17. Unsupervised Learning – K-Means, PCA • 18. Model Evaluation – Confusion Matrix, RMSE, AUC
🔹 Module 7: Feature Engineering & Model Tuning (Sessions 19–21) • 19. Feature Scaling, Encoding, Handling Outliers • 20. Feature Selection, Missing Values Treatment • 21. Hyperparameter Tuning – GridSearchCV, Cross Validation
🔹 Module 8: Deep Learning with TensorFlow & Keras (Sessions 22–26) • 22. Basics of Neural Networks – ANN, ReLU, Softmax • 23. CNNs for Image Classification • 24. RNNs & LSTM for Sequence Modeling • 25. Model Optimization – Dropout, BatchNorm • 26. Transfer Learning – MobileNet, ResNet
🔹 Module 9: Natural Language Processing (NLP) (Sessions 27–29) • 27. Text Preprocessing – Tokenization, Stopwords, TF-IDF • 28. Word Embeddings – Word2Vec, GloVe • 29. Text Classification, Transformers, LLMs Overview
🔹 Module 10: MLOps & Deployment (Sessions 30–33) • 30. Model Saving (Pickle, Joblib) & REST APIs with Flask • 31. Streamlit Dashboard for AI Apps • 32. Dockerizing Models, GitHub & Version Control • 33. Deployment to Cloud – Heroku, AWS, GCP
🔹 Module 11: Real-World Case Studies (Sessions 34–36) • 34. Case Study 1: E-commerce Recommendation System • 35. Case Study 2: Fraud Detection in Banking • 36. Case Study 3: Retail Demand Forecasting / AI in Healthcare
🔹 Module 12: Capstone Project (Sessions 37–39) • 37. Problem Statement + Data Collection & Cleaning • 38. Modeling & Evaluation • 39. Deployment, Presentation & Demo
🔹 Final Session: Review & Career Prep (Session 40) • 40. Resume Building, GitHub Portfolio, Mock Interviews