Full Stack AI – 40 Sessions Plan

0

... English
... Non-Certificate Course
... 0 Students
... 12 Aug, 2025 05:30 am UTC

Course Overview

🔹Module 1: Data Science Foundations (Sessions 1–2)

  • 1. Introduction to Full Stack AI
  • 2. Data Science Lifecycle, AI vs ML vs DL & Real-World Use Cases

🔹 Module 2: Python for Data Analysis (Sessions 3–6)

  • 3. Python Basics: Syntax, Control Structures, Functions
  • 4. Data Structures in Python – List, Dict, Set, Tuple
  • 5. NumPy for Numerical Computing
  • 6. Pandas – Data Manipulation & Cleaning

🔹 Module 3: Data Visualization & Storytelling (Sessions 7–9)

  • 7. Visualization using Matplotlib & Seaborn
  • 8. Interactive Dashboards using Plotly & Tableau
  • 9. Storytelling with Data – Generating Business Insights

🔹 Module 4: SQL for Data Science (Sessions 10–11)

  • 10. SQL Basics – SELECT, JOIN, WHERE, GROUP BY
  • 11. Window Functions, Subqueries, Python Integration

🔹 Module 5: Statistics & Probability (Sessions 12–13)

  • 12. Descriptive & Inferential Statistics, Distributions
  • 13. Hypothesis Testing, Confidence Intervals, A/B Testing

🔹 Module 6: Machine Learning – Core Models (Sessions 14–18)

  • 14. ML Workflow & Supervised Learning – Linear Regression
  • 15. Logistic Regression, Decision Trees
  • 16. Random Forest & Gradient Boosting (XGBoost)
  • 17. Unsupervised Learning – K-Means, PCA
  • 18. Model Evaluation – Confusion Matrix, RMSE, AUC

🔹 Module 7: Feature Engineering & Model Tuning (Sessions 19–21)

  • 19. Feature Scaling, Encoding, Handling Outliers
  • 20. Feature Selection, Missing Values Treatment
  • 21. Hyperparameter Tuning – GridSearchCV, Cross Validation

🔹 Module 8: Deep Learning with TensorFlow & Keras (Sessions 22–26)

  • 22. Basics of Neural Networks – ANN, ReLU, Softmax
  • 23. CNNs for Image Classification
  • 24. RNNs & LSTM for Sequence Modeling
  • 25. Model Optimization – Dropout, BatchNorm
  • 26. Transfer Learning – MobileNet, ResNet

🔹 Module 9: Natural Language Processing (NLP) (Sessions 27–29)

  • 27. Text Preprocessing – Tokenization, Stopwords, TF-IDF
  • 28. Word Embeddings – Word2Vec, GloVe
  • 29. Text Classification, Transformers, LLMs Overview

🔹 Module 10: MLOps & Deployment (Sessions 30–33)

  • 30. Model Saving (Pickle, Joblib) & REST APIs with Flask
  • 31. Streamlit Dashboard for AI Apps
  • 32. Dockerizing Models, GitHub & Version Control
  • 33. Deployment to Cloud – Heroku, AWS, GCP

🔹 Module 11: Real-World Case Studies (Sessions 34–36)

  • 34. Case Study 1: E-commerce Recommendation System
  • 35. Case Study 2: Fraud Detection in Banking
  • 36. Case Study 3: Retail Demand Forecasting / AI in Healthcare

🔹 Module 12: Capstone Project (Sessions 37–39)

  • 37. Problem Statement + Data Collection & Cleaning
  • 38. Modeling & Evaluation
  • 39. Deployment, Presentation & Demo

🔹 Final Session: Review & Career Prep (Session 40)

  • 40. Resume Building, GitHub Portfolio, Mock Interviews
See more

FAQ

FAQ area empty

Course curriculum

No Requirements/Outcomes

Instructor

...
Maruthi Instructor

0.0

  • ... 10 Students
  • ... 10 Courses
  • ... 1 review
View Details
...

$225

$450
... Buy Now ... Inquiry
  • ...

    Students

    0
  • ...

    Language

    English
  • Level

    advanced
  • ...

    Expiry period

    Lifetime
  • ...

    Certificate

    No
Share :

Download Mobile App

Try scrolling the rest of the page to see this option in action.